
Third Semester B．E．Degree Examination，Dec．2018／Jan． 2019 Engineering Mathematics－III

Time： 3 hrs．
Max．Marks： 100

Note：Answer any FIVE full questions，choosing ONE full question from each module．

Module－1

1 a．Find the Fourier series expansion for the periodic function $f(x)$ ，if in one second

$$
f(x)=\left\{\begin{array}{lr}
0 ; & -\pi<x<0 \tag{08Marks}\\
x ; & 0<x<\pi
\end{array} .\right.
$$

b．Expand the function $\mathrm{f}(\mathrm{x})=\mathrm{x}(\pi-\mathrm{x})$ over the interval $(0, \pi)$ in half range Fourier cosine series．
（06 Marks）
c．The following value of function y gives the displacement in inches of a certain machine part for rotations x of a flywheel．Expand y －in terms of Fourier series upto the second harmonic．

Rotations	x	0	$\pi / 6$	$2 \pi / 6$	$3 \pi / 6$	$4 \pi / 6$	$5 \pi / 6$	π
Displacement	y	0	9.2	14.4	17.8	17.3	11.7	0

（06 Marks）

OR

2 a．Find the Fourier series expansion for the function ：
$f(x)=\left\{\begin{array}{cc}\pi x ; & 0 \leq x \leq 1 \\ \pi(2-x) ; & 1 \leq x \leq 2\end{array}\right.$
and deduce $\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$ ．
（08 Marks）
b．Expand in Fourier series $f(x)=(\pi-x)^{2}$ over the interval $0 \leq x \leq 2 \pi$ ．
（06 Marks）
c．The following table gives the variations of periodic current over a period T ．

t （secs）	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
A （Amps）	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Expand the function（periodic current）by Fourier series and show that there is a direct current part of 0.75 amp and also obtain amplitude of first harmonic．
（06 Marks）

Module－2

3 a．Find Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2} ; & |x|<1 \\ 0 ; & |x|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x$ ．
（08 Marks）
b．Find Fourier Cosine transform of the function ：
$f(x)=\left\{\begin{array}{cc}4 x ; & 0<x<1 \\ 4-x ; & 1<x<4 \\ 0 ; & x>4\end{array}\right.$
（06 Marks）
c．Find z－transforms of：i）$a^{n} \sin n \theta$ ii）$a^{-n} \cos n \theta$ ．
（06 Marks）

OR

4 a. Find Fourier sine transform of $f(x)=e^{-|x|}$ and hence evaluate : $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x, m>0$.
(08 Marks)
b. Find z -transform of $\mathrm{u}_{\mathrm{n}}=\cosh \left(\frac{\mathrm{n} \pi}{2}+\theta\right)$.
(06 Marks)
c. Solve the difference equation using z-transforms $u_{n+2}+6 u_{n+1}+9 u_{n}=2^{n}$. Given $u_{0}=u_{1}=0$.
(06 Marks)

Module-3

a. If θ - is the acute angle between the two regression lines relating the variables x and y, show that $\operatorname{Tan} \theta=\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}{ }^{2} \sigma_{y}{ }^{2}}\right)$.
(08 Marks)

Indicate the significance of the cases $r= \pm 1$ and $r=0$.
b. Fit a straight line $y=a x+b$ for the data.

x	12	15	21	25
y	50	70	100	120

(06 Marks)
c. Find a real root of the equation by using Newton-Raphson method near $x=0.5, x^{x}=2$, perform three iterations.
(06 Marks)

OR

6 a. Compute the coefficient of correlation and equation of regression of lines for the data :

x	1	2	3	4	5	6	7
y	9	8	10	12	11	13	14

(08 Marks)
b. The Growth of an organism after x - hours is given in the following table :

x (hours)	5	15	20	30	35	40
y (Growth)	10	14	25	40	50	62

Find the best values of a and b in the formula $y=a e^{b x}$ to fit this data.
(06 Marks)
c. Find a real root of the equation $\cos x=3 x-1$ correct to three decimals by using Regula -

False position method, given that root lies in between 0.6 and 0.7 . Perform three iterations.
(06 Marks)

Module-4

7 a. Find $y(8)$ from $y(1)=24, y(3)=120, y(5)=336, y(7)=720$ by using Newton's backward difference interpolation formula.
(08 Marks)
b. Define $f(x)$ - as a polynomial in x for the following data using Newton's divided difference formula.
(06 Marks)

x	-4	-1	0	2	5
$f(x)$	1245	33	5	9	1335

c. Evaluate the integral $\mathrm{I}=\int_{0}^{6} \frac{\mathrm{dx}}{4 \mathrm{x}+5}$ using Simpson's $\frac{1}{3}$ rd rule using 7 ordinates.
(06 Marks)

$$
2 \text { of } 3
$$

OR

8 a. For the following data calculate the differences and obtain backward difference interpolation polynomial. Hence find $f(0.35)$.
(08 Marks)

x	0.1	0.2	0.3	0.4	0.5
$\mathrm{f}(\mathrm{x})$	1.40	1.56	1.76	2.0	2.28

b. Using Lagrange's interpolation find y when $\mathrm{x}=10$.

x	5	6	9	11
y	12	13	14	16

(06 Marks)
c. Evaluate $\int_{0}^{1} \frac{x}{1+x^{2}} d x$ by Weddle's rule considering seven ordinates.
(06 Marks)

Module-5

9 a. Verify the Green's theorem in the plane for $\int_{c}\left(x^{2}+y^{2}\right) d x+3 x^{2} y$ dy where $C-$ is the circle $x^{2}+y^{2}=4$ traced in positive sense.
(08 Marks)
b. Evaluate $\int_{c}(\sin z . d x-\cos x d y+\sin y d x)$ by using Stokes theorem, where $C-$ is the boundary of the rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1$ and $z=3$.
(06 Marks)
c. Find the curve on which the functional : $\int_{0}^{1}\left[y^{\prime 2}+12 x y\right] d x$ with $y(0)=0, y(1)=1$ can be extremised.
(06 Marks)

OR

10 a. Given $\mathrm{f}=\left(3 \mathrm{x}^{2}-\mathrm{y}\right) \mathrm{i}+\mathrm{xzj}+(\mathrm{yz}-\mathrm{x}) \mathrm{k}$ evaluate $\int_{\mathrm{c}} \mathrm{f} \cdot \mathrm{dr}$ from $(0,0,0)$ to $(1,1,1)$ along the paths $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}$ and $\mathrm{z}=\mathrm{t}^{3}$.
(08 Marks)
b. Derive Euler's equation in the form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
(06 Marks)
c. Prove that the shortest distance between two points in a plane is a straight line.
(06 Marks)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Strength of Materials

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Show that volumetric strain is equal to algebraic sum of the strains in three mutually perpendicular directions in case of cuboid.
(05 Marks)
b. Calculate the diameter of steel rod needed to carry a load of 8 kN , if the extension is not to exceed 0.04 percent. Assume $\mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2}$.
(05 Marks)
c. A reinforced concrete column $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ in size has 4 reinforcement bars of steel 20 mm in diameter. Calculate the safe load, the column can carry if the permissible stress in concrete is $5.2 \mathrm{MN} / \mathrm{mm}^{2}, \frac{\mathbb{I}_{\text {steel }}}{\mathrm{E}_{\text {concrete }}}=18$.
(10 Marks)

2 a. Derive an expression for change in length in case of a uniformly varying circular cross section whase diameter varies from d_{1} to d_{2} over a length ' L ' subjected to an axial force F.
(06 Marks)
b. A rod is 2 m long at a temperature of $10^{\circ} \mathrm{C}$. Find the expansion of the rod when the temperature is raised to $80^{\circ} \mathrm{C}$. If this expansion is prevented, find the stress induced in the material of the rod. Take $\mathrm{E}=1.0 \times 10^{5} \mathrm{MPa}$ and $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
(05 Marks)
c. A bar of cross section $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ is subjected to an axial pull of 8000 N . The lateral dimension of the bar is found to be changed to $9.9985 \mathrm{~mm} \times 9.9 \Phi 85 \mathrm{~mm}$. If the modulus of rigidity is $0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine the Ifoisson's ratio and modulus of elasticity.
(09 Marks)

Module-2

3 a. Derive expressions for hoop stress and longitudinal stress in case of thin cylinder. (08 Marks) b. At a point in a strained material the stresses acting are as shown in Fig. Q3 (b). Determine the (i) Principal stresses and their planes (ii) Maximum shear stress and their planes (iii) Normal and shear stresses on the inclined plane $A B$.
(12 Marks)

Fig. Q3 (b)

OR

4 a. At a point in a strained material the normal stresses are σ_{x} and σ_{y} which are tensile in nature and shear stress acting is τ_{xy}, derive expressions for normal stress and shear stress on an inclined plane making an angle ' θ ' with the vertical plane.
(10 Marks)
b. The inside diameter of thick cylinder is 200 mm . If the internal pressure is $8 \mathrm{~N} / \mathrm{mm}^{2}$ and maximum permissible stress in cylinder wall is $20 \mathrm{~N} / \mathrm{mm}^{2}$, what is the minimum thickness required. If the internal pressure is to be increased to $12 \mathrm{~N} / \mathrm{mm}^{2}$ without exceeding maximum stress, what is the external pressure to be applied?
(10 Marks)

Module-3

a. A cantilever of length ' l ' is subjected to a load intensity of w / m at fixed end, uniformly varying to zero at free end. Considering a section ' X ' at a distance ' x ' from free end, write shear force and bending moment equations and using them draw shear force diagram and bending moment diagram.
(10 Marks)
b. Draw shear force diagram and bending moment diagram for the Cantilever beam shown in Fig. Q5 (b).
(10 Marks)

OR
Fig. Q5 (b)
6 a. What is Pare bending? Explain with examples.
(05 Marks)
b. Draw shear force diagram and bending moment diagram far the beam shown in Fig. Q6 (b).
(15 Marks)

Fig. Q6 (b)

Module-4

7 a. Explain maximum strain energy theory (Beltrami and Haigh).
(05 Marks)
b. Derive the expression for power transmitted by the shaft.
(05 Marks)
c. A solid shaft has to transmit 120 kW of power at 160 rpm . If the shear stress is not to exceed 60 MPa and the twist in a length off 3 m must not exceed 1°, find the suitable diameter of the shaft. G $=80 \mathrm{GPa}$.
(10 Marks)

OR

8 a. Derive with usual notations the torsion equation,
$\frac{\mathrm{T}}{\mathrm{J}}=\frac{\tau_{\max }}{\mathrm{R}}=\frac{\mathrm{G}_{\theta}}{\mathrm{L}}$
(10 Marks)
b. The cross section of $\not \geqq$ bolt is required to resist an axial tension of 15 kN and a transverse shear of 15 kN . Hstimate the diameter af the bolt by (i) Waximum principal stress theory and (ii) Maximum shear stress theory. The elastic linmit of the material is $300 \mathrm{~N} / \mathrm{mm}^{2}$. Poisson's ratio $=0.25$ and factor of safety $=3$.
(10 Marks)

Module-5

9 a. Derive $\mathbb{E} u l e r$'s crippling load when both ends of column are hinged.
(06 Marks)
b. A honizontal beam of the section shown in Fig. (49 (b) is 4 m long and is simply supported at the ends. Find the maximrum uniformly distributed load it can carry if the compressive and tensile stresses are not to exceed 60 MPa and 30 MPa respectively.
(14 Marks)

a. Define: (i) Neutral axis
(iii) Flexural nigidity
(08 Marks)
b. Compare the crippling loads as found from Euler's and Rankine's formula for a mild steel tube of length 3 m , of internal diameter 5 cm and thickness of metal 0.25 cm . Both ends are pin jointed. $\mathrm{E}=2.1 \times 10^{2} \mathrm{KN} / \mathrm{mm}^{2}$. Take $\alpha=\frac{1}{7500}, \sigma_{\mathrm{C}}=300 \mathrm{~N} / \mathrm{mm}^{2}$.
(12 Marks)

CBCS SCnEME
 USN

 Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
 Fluid Mechanics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Define the term 'fluid'. Distinguish between liquid and gases.
b. Derive the expression for surface tension on a liquid droplet.
c. The dynamic viscosity of an oil, used for lubrication between a shaft and sleeve is $0.6 \mathrm{Ns} / \mathrm{m}^{2}$. The shaft diameter is 0.4 m and rotates at 190 rpm . Calculate the power lost in the bearing a sleeve length of 90 mm . Take the thickness of the $0: 1$ film as 1.5 mm .
(08 Marks)

OR

2 a. Explain the working of a Bourdon's pressure gauge with a diagram. (06 Marks)
b. State and prove Pascal's law.
(08 Marks)
c. A differential manometer is connected at the two points A and B of two pipes as shown in Fig.Q.2(c). The pipe A contains a liquid of sp.gr $=1.5$ while pipe B contains a liquid of sp.gr $=0.9$. The pressures at A and B are $9.81 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$ and $17.65 \mathrm{~N} / \mathrm{m}^{2}$ respectively. Find the difference in mercury level in the differential manometer.
(06 Marks)

Fig.Q.2(c)

Module-2

3 a. Define: i) Total pressure ii) Centre of pressure.
(04 Marks)
b. Derive the expression for the total pressure and center of pressure on a vertically immersed plane surface.
(08 Marks)
c. The velocity potential function $\phi=\frac{-x y^{3}}{3}-x^{2}+x^{3} y+y^{2}$.
i) Find the velocity component in x and y directions.
ii) Show that ϕ represents a possible case of fluid flow.
(08 Marks)

OR

4 a. Derive continuity equation in Cartesian coordinates for 3 dimensional flow.
(08 Marks)
b. A rectangular plane surface 1 m wide and 3 m deep lies in water in such a way that its plane makes an angle of 30° with the free surface of water. Determine the total pressure and the depth of center of pressure when the upper edge of the plate is 2 m below the free surface.
(06 Marks)
c. What is flownet? The stream function for a two dimensional flow is given by $\psi=2 \mathrm{xy}$. Find the velocity potential function ' ϕ '.
(06 Marks)

Module-3

5 a. State the assumptions made in deriving the Euler's equation of motion. Hence obtain Bernoulli's equation from Euler's equation with a neat sketch.
(10 Marks)
b. A pipe of diameter 400 mm carries water at a velocity of $25 \mathrm{~m} / \mathrm{s}$. The pressure at the points A and B are given as $29.43 \mathrm{~N} / \mathrm{cm}^{2}$ and $22.563 \mathrm{~N} / \mathrm{cm}^{2}$ respectively, while the datum head at A and B are 28 m and 30 m . Find the loss of head between A and B.
(05 Marks)
c. Show that for a pitor tube actual velocity $\mathrm{V}=\mathrm{C}_{\mathrm{y}} \sqrt{\mathrm{yh}}$ with usual notations.

OR

6 a. Derive the equation for discharge through a venturimeter.
(08 Marks)
b. Water flow at the rate of $0.147 \mathrm{~m}^{3} / \mathrm{s}$ through a 150 mm diameter orifice inserted in a 300 mm diameter pipe. If the pressure gauges fitted upstream and down stream of the orifice plate have shown readings of $176.58 \mathrm{kN} / \mathrm{m}^{2}$ and $88.29 \mathrm{kN} / \mathrm{m}^{2}$ respectively, find the coefficient of discharge ' C ' of the orifice meter.
(05 Marks)
c. A 45° reducing bend is connected in a pipe line, the diameters at the inlet and outlet of the bend being 600 mm and 300 mm respectively. Find the force exerted by water on the bend if the pressure intensity at the inlet to the bend is $8.829 \mathrm{~N} / \mathrm{cm}^{2}$ and rate of flow of water is $600 \mathrm{lit} / \mathrm{sec}$.
(07 Marks)

Module-4

7 a. Define hydraulic coefficient Cc, Cv and Cd for an orifice and obtain the relation between them.
(08 Marks)
b. Derive the expression of discharge through a triangular notch.
(08 Marks)
c. Find the discharge over a Cipolletti weir of length 2.0 m when the head over the weir is 1 m . Take $\mathrm{C}_{\mathrm{d}}=0.62$.
(04 Marks)

OR

8 a. What are the advantages of triangular notch over rectangular notch? How do you classify mouth pieces?
(06 Marks)
b. A jet of water, issuing from a sharp-edged vertical orifice under a constant head of 10.0 cm at a certain point, has the horizontal and vertical coordinates measured from the Vena-Contracta as 20.0 cm and 10.5 cm respectively. Find the value of C_{v}. Also find the value of C_{c} if $\mathrm{C}_{\mathrm{d}}=0.60$.
(06 Marks)
c. What is broad crested weir? Show that under maximum discharge conditions $\mathrm{h}=2 / 3 \mathrm{H}$ with usual notations for a broad crested weir.
(08 Marks)

Module-5

9 a. Derive Darcy's equation for head loss through pipes.
(08 Marks)
b. Explain: i) Pipes in parallel ii) Pipes in series.
(04 Marks)
c. The rate of water flow of water through a horizontal pipe is $0.025 \mathrm{~m}^{3} / \mathrm{s}$. The diameter of the pipe which is 200 mm is suddenly enlarged to 4000 mm . The pressure intensity in the smaller pipe is $11.772 \mathrm{~N} / \mathrm{cm}^{2}$. Compute:
i) Loss of head due to sudden enlargement
ii) Pressure intensity in the large pipe.
(08 Marks)
a. Explain the terms:
i) Hydraulic gradient and
ii) Total energy line.
(04 Marks)
b. Derive the expression for pressure loss due to sudden closure of the valve when the pile is elastic.
(08 Marks)
c. For a pipe network shown in Fig.Q.10(c) find the flow in each pipe. The valve of ' n ' mg / c assumed as 2.0.
(08 Marks)

Fig.Q.10(c)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Surveying

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define surveying. Enumerate the applications of surveying.
(10 Marks)
b. Discuss the classification of surveying.
(10 Marks)

OR

2 a. Explain Indirect method of ranging with a sketch.
(10 Marks)
b. A big pond obstructs the chain line $A B$. A line $A L$ was measured on the left of the line $A B$ for circumventing the obstacle. The length of AL was 901 m . Similarly the line AM was measured on the right of the line $A B$ whose length was 1100 m . Points M, B, L are in straight line. Length's of the links BL and BM are 502 m and 548 m respectively. Find the distance AB .
(10 Marks)

3
a. Distinguish between:
i) True meridian and magnetic meridian
ii) Whole Circle bearing and Quandrantal bearing.
(05 Marks)
b. A closed compass transverse ABCDEA was conducted round a forest and the following bearings were observed with a compass. Calculate the interior angles. Apply check and plot the transverse (not to scale).

Line	AB	BC	CD	DE	EA
Fore bearing	$60^{\circ} 30^{\prime}$	$122^{\circ} 00^{\prime}$	$46^{\circ} 00^{\prime}$	$205^{\circ} 30^{\prime}$	$300^{\circ} 00^{\prime}$

(10 Marks)
c. The magnetic bearing of a line was found to be $\mathrm{N} 60^{\circ} 30^{\prime} \mathrm{W}$ in 2002 , when the declination was $5^{\circ} 10^{\prime} \mathrm{E}$. Find its present magnetic bearing, if declination is $3^{\circ} \mathrm{W}$.
(05 Marks)

OR

4 a. Explain briefly the applications of thedolite.
(08 Marks)
b. Explain the repetition method of measuring the horizontal angle using transit thedolite and errors eliminated by that method.
(12 Marks)

Module-3

5 a. What is meant by balancing of traverse? Explain the Bowditch method of adjusting the traverse.
(10 Marks)
b. A tacheometer, fitted with an analectic lens and having the multiplying constant 100 , was set up at station C to determine the gradient between two points A and B and the following observations were taken keeping the staff vertical.

Staff @	Vertical angle	Stadia readings
A	$+4^{\circ} 20^{\prime} 0^{\prime \prime}$	$1.300,1.610,1.920$
B	$0^{\circ} 10^{\prime} 40^{\prime \prime}$	$1.100,1.410,1.720$

If the horizontal angle ACB is $35^{\circ} 20^{\prime}$ determine the gradient between A and B .
(10 Marks)

OR

6 a. Derive the distance and elevation formulae for stadia techeometry, when the staff is held vertical and the line of sight being inclined upwards and downwards.
(08 Marks)
b. Describe the closing error in a compass traverse. Explain how the closing error is adjusted by transit rule.
c. The bearings of PQ and QR are $18^{\circ} 36^{\prime}$ and $60^{\circ} 24^{\prime}$ respectively. The coordinated of the ends P and R are:

Point	North coordinate	East Coordinate
P	300.0	400.0
R	1432.8	1257.2

Find the length of PQ and QR .
(06 Marks)

Module-4

7 a. Explain the effects of curvature and refraction in leveling.
(08 Marks)
b. The following observations were made on a hill top to ascertain its elevation. The height of the target F was 5 m .

Instrument Station	Staff reading on BM	Vertical Angle	Remarks
O_{1}	2.550	$18^{\circ} 6^{\prime}$	RL of
O_{2}	1.670	$28^{\circ} 42^{\prime}$	$\mathrm{BM}=345.58$

The instrument station were 100 M apart and wave in line with ' F '.
(12 Marks)

OR

8 a. The following consecutive readings were taken with a dumpy level and 4 m leveling staff on a continuously slopping ground at a common interval of $30 \mathrm{~m}: 0.415,1.025,2.085,2.925$, $3.620,0.715,2.115,3.090,0.405,1.525,2.005,3.650$. The first point was 185.575 M above MSL. Rule out a page of level book and enter the readings. Calculate the reduced levels of all the points by "Height of instrument method". Also calculate the gradient of line joining first and last points.
(10 Marks)
b. Derive the expressions for the horizontal distance, vertical distance and the elevation of an elevated object, when the base is inaccessible and instrument stations are not in the same vertical plane with the object.
(10 Marks)

Module-5

9 a. The following perpendicular offsets were taken from a chain line to an irregular boundary

Chainage	0	10	20	30	40	50	60	70
Off set	14.2	28.5	35.8	30.6	29.0	27.6	33.5	26.0

Compute the area of by: i) Mid ordinate rule (ii) Trapezoidal rule (iii) Simpson's rule
(12 Marks)
b. Write short notes on digital planimeter.
(08 Marks)

OR

10 a. Describe the different characteristics of contours.
(08 Marks)
b. Explain the interpolation of contours. List the methods of contouring.
(04 Marks)
c. A road embankment is 30 m wide at the top with side slopes of $2: 1$. The ground levels at 100 m intervals along a line AB are as under: $\mathrm{A} 170.30,169.10,168.50,168.10,166.50 \mathrm{~B}$. The formation level at ' A ' is 178.70 M with uniform falling ground of 1 in 50 from ' A ' to ' B '. Determine the volume of earthwork by prismoidal formula. Assume the ground to be in cross-section.
(08 Marks)

GBCS SCHEMII
 USN

 Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

 Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Geology

 Engineering Geology}

17CV/CT35

Time: 3 hrs.

Module-1

1 a. Describe the role of geology in the Civil Engineering Projects.
(06 Marks)
b. With neat sketch, explain the different zones of the interior of the EARTH. (06 Marks)
c. Define a mineral with examples. Describe the following physical properties of minerals :
i) Lustre
ii) Cleavage.
(08 Marks)

OR

2 Describe how the physical properties are helpful in their identification of minerals in the field with examples.
(20 Marks)

Module-2

3 a. What are Rocks? Based on their origin, how the rocks have been classified and how are they formed with examples.
(04 Marks)
b. With the help of neat sketches, describe the forms of igneous rocks.
(08 Marks)
c. Describe any two rocks their geological properties and add their engineering uses :
i) Granite
ii) Sand stone
iii) Marble.
(08 Marks)

OR

4 What are folds? How are they caused? With neat sketch, mention the parts of the fold. Describe the different types of folds with figures. Also add a note on their civil engineering considerations.
(20 Marks)

Module-3

5 a. What is Weathering? Describe the mechanical and chemical weathering.
(10 Marks)
b. Give detailed account of geological work done by rivers.
(10 Marks)

OR

6 a. What is an Earthquake? Describe the tectonic causes of earthquake and write note on the effects of earthquakes.
(10 Marks)
b. Write note on causes of landslides.
(05 Marks)
c. Write brief note on coastal land forms.

Module-4

7 a. Define Ground water. Describe the hydrological cycle. Explain the factors influencing the surface runoff and infiltration.
(10 Marks)
b. Discuss the ground water survey by Electrical Resistivity method, with a circuit diagram.
(10 Marks)

OR

8 Write notes on :
a. Water table and perched water table.
b. Aquifer and its types.
c. Specific yield and retention.
d. Porosity and Permeability.
(20 Marks)

Module-5

9 a. What is Remote Sensing? Write its application in Civil Engineering.
(08 Marks)
b. What is Geographical Information System? Name the different components of Geographical Information System.
(06 Marks)
c. Write a note on Application of Global Positioning System (GPS) in Civil Engineering.
(06 Marks)

10 Write a note on :
a. Impact of Mining, Quarring on Environment.
(10 Marks)
b. Natural disasters and their mitigation.
(10 Marks)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Building Materials and Construction

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain physical and chemical classification of rocks.
(08 Marks)
b. List and explain Laboratory tests on bricks.
(06 Marks)
c. Explain bulking of sand.
(06 Marks)

OR

2 a. Which are the constituents of good brick earth? Explain.
(06 Marks)
b. What is Quarrying of stone? Explain methods of Quarrying.
(08 Marks)
c. Explain the importance of shape, size and texture of coarse aggregates in cement concrete making.
(06 Marks)

Module-2

3 a. What is foundation? Explain the functions of foundation.
(06 Marks)
b. Explain strip footing and strap footing with sketches.
(06 Marks)
c. What are the special features of English bond? Explain with $1 \frac{1}{2}$ brick thick wall. (08 Marks)

OR

4 a. What is pile foundation? Explain with sketches the classification of pile foundation based on its function.
(06 Marks)
b. Differentiate between Random rubble masonry and coursed rubble masonry. (06 Marks)
c. Draw the plan of $11 / 2$ brick thick Flemish bond and explain its salient features.
(08 Marks)

Module-3

5 a. Explain the following with sketches:
(i) RCC lintel
(ii) Stone lintel.
(06 Marks)
b. Discuss various modes of failure of an arch and what are its remedies?
(06 Marks)
c. Draw the sketch of king post wooden roof truss (half part) and label its parts.
(08 Marks)

OR

6 a. Mention the types of sloped roof. Explain any three types of sloped roof with sketches.
(08 Marks)
b. What are the requirements of good floor? What are the components of ground floor with mosaic flooring?
(06 Marks)
c. What is an arch? Draw the sketch of elemental arch.
(06 Marks)

Module-4

7 a. Explain salient features of framed and panelled door with sketch (Double shutter). (08 Marks)
b. Differentiate between Bay window and corner window with sketches.
(06 Marks)
c. What are the requirements of good stair?
(06 Marks)

OR

8 a. Design a stair-case for a residential building using stair hall $2.5 \mathrm{~m} \times 5 \mathrm{~m}$. The vertical distance between the floors is 3.6 m . Sketch the plan of staircase.
b. What is shoring? Explain Raking shore with a sketch.
c. What are the requirements of locating door and windows?

Module-5

9 a. Discuss the defects in plastering.
b. Name and explain the constituents of oil paint.
c. What are causes of damping in the building and what are its remedies?

OR

10 a. Explain the objects of plastering and types of plaster finishing.
(08 Marks)
b. Explain the procedure of painting for the following :
(i) New wood work surface
(ii) New plastered surface
(06 Marks)
c. Differentiate between stucco plastering and lathe plastering.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Additional Mathematics - I

Time: 3 hrs .

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Prove that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}\left(\frac{\theta}{2}\right) \cos \left(\frac{n \theta}{2}\right)$
(08 Marks)
b. Express $\sqrt{3}+\mathrm{i}$ in the polar form and hence find its modulus and amplitude. (06 Marks)
c. Find the sine of the angle between vectors $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}} \quad$ (06 Marks)

OR

2 a. Express $\frac{3+4 i}{3-4 i}$ in the form $x+i y$.
(08 Marks)
b. If the vector $2 \hat{i}+\lambda \hat{j}+\hat{k}=0$ and $4 \hat{i}-2 \hat{j}-2 \hat{k}$ are perpendicular to each other, find λ.
c. Find λ, such that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}, 3 \hat{i}+\lambda \hat{j}+5 \hat{k}$ are coplanar.
(06 Marks)
(06 Marks)

Module-2

3 a. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$
(08 Marks)
b. With usual notations, prove that $\tan \phi=\mathrm{r} \frac{\mathrm{d} \theta}{\mathrm{dr}}$.
(06 Marks)
c. If $u=\log _{e} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$.
(06 Marks)

OR
4 a. Using Maclaurin's series, expand $\tan x$ upto the term containing x^{5}.
(08 Marks)
b. Find the pedal equation of $r=a(1-\cos \theta)$.
(06 Marks)
c. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z$ and $w=2 z^{2}-x y$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$.
(06 Marks)

Module-3

5 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} d x$
(06 Marks)
c. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$
(06 Marks)

OR

6 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$
c. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$
(06 Marks)

Module-4

7 a. A particle moves along the curve $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}$ and $\mathrm{z}=3 \mathrm{t}-5$, where ' t ' is the time. Find its velocity and acceleration vectors and also magnitude of velocity and acceleration at $\mathrm{t}=1$.
(08 Marks)
b. In which direction of the directional derivative of $x^{2} y z^{3}$ is maximum at $(2,1,-1)$ and find the magnitude of this maximum.
c. Show that $\overrightarrow{\mathrm{F}}=(\mathrm{y}+\mathrm{z}) \hat{\mathrm{i}}+(\mathrm{x}+\mathrm{z}) \hat{\mathrm{j}}+(\mathrm{x}+\mathrm{y}) \hat{\mathrm{k}}$ is irrotational.
(06 Marks)

OR

8 a. If $\phi=x y^{2} z^{3}-x^{3} y^{2} z$, find $\nabla \phi$ and $|\nabla \phi|$ at $(1,-1,1)$.
(08 Marks)
b. If $\vec{F}=(x+y+1) \hat{i}+\hat{j}-(x+y) \hat{k}$, show that $\vec{F} \cdot \operatorname{Curl} \vec{F}=0$.
(06 Marks)
c. If $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$ represents the parametric equation of a curve, find the angle between the tangents at $\mathrm{t}=1$ and $\mathrm{t}=2$.
(06 Marks)

Module-5

9 a. Solve: $\left(x \tan \frac{y}{x}-\frac{y}{x} \sec ^{2} \frac{y}{x}\right) d x=x \sec ^{2} \frac{y}{x} d y$
(08 Marks)
b. Solve : $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
c. Solve: $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$
(06 Marks)

OR

10 a. Solve : $(3 y+2 x+4) d x-(4 x+6 y+5) d y=0$
(08 Marks)
b. Solve : $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
(06 Marks)
c. Solve : $(y \log y) d x+(x-\log y) d y=0$.
(06 Marks)

CBCs sch bine

Third Semester B．E．Degree Examination，Dec．2018／Jan． 2019 సన్నడ హునసు
（COMMON TO ALL BRANCHES）
Time： 2 hrs．］

గుอజనేగళు

 గురుతినుట్రదు అభ్యథికయు జటాబ్దారియూలగిరుత్తడి．

 ভ్రె్నెగి ఎరడు లుత్తరటస్ను గురుతిసుత్రుదు అఱూన్య．
5．ఎల్ల లుత్తరగళన్ను నిటుగి ఒడగిసెలాద ఓ．ఎం．ఆరా లుత్తర ఱృత్రిశయయు
 గురుతు టూరడబొలzు．

అ）స్టృట్ట్ట డూరింి
బ）నెలర నిరుంఱృ
モ）సౌజన్య
డ）ฝొలలిన ఎల్లథు

2．సెబిట్＋ఆలయు＝సబిటాలయు，ఇల్లిరుฝె సెంధి ：
అ）సుबణణ సుంధ
బ）సెฝణణ ధిలఖ゙ఁ సెంధి
च）రలజయiงen సెంధి
డ్）టృద్ధి సెంధి

అ）చందాఙలర
బ）ఱొంథనంబిซ

డ）డుతియయు ద్పొలఱ

అ）శீอ○もణ
బ）బడూగణ
キ）తீంもణ
๘）ఱొండణ
5. 'నౌను నిన్నా ซా.జి.ఎథగి कరలలగిద్దిను' ఱలశ్యదల్లిరులె ซౌల :
అ) భుృత ซరల
బ) రాజయiอeగ ซоల
ఈ) యుఱుగండ ซరల
డ) రాळు చంల

అ) పేణణ జిత్ర
బ) భాయోర జిత్ర
چ) త్లల జిఠ్ర
๘) ఔలన జిత్ర

అ) రిงట్టిగగ బిణ్ణి ळజ్బ్

₹) ळலృగళుฝుదు
డ) రాగిఱొద్దిగొ బిణ్ణ

అ) సుంత్రదాయుగళిగింతలు మిగిలాగిరుథ్రదు ఱుళింఖయ झేనత్.
బ) ఱుళిళ్ మిలసేలాతి

๘) ఈనససి ఱుదుటి
9. శ్రిల 'బందాల నటాజో' యూరు?
అ) గులబగంఁద సుంఫి సుంఠరు
బ) బ్రిటిలరింద లుంబళి జుడిదపరు
モ) ฝజ్ర ట్యాఱురిగెళు
డ) గణి ఛణి

అ) ఛ్వని సేంఱతత్తు
బ) సెంయీคఁజనే
ఈ) నిదొల్రన
డ) చంఠదలన

అ) ఆన దంత శుంగ్రळణొ
బ) వోడ్ద్రగ కురితు అధ్యయున

అ) बణరణ ర్రவు Шధ్ధి
బ) జอతిఁయుత
₹) ஹుฐ నంబిశ
๘) టుळలత్మ గంంధిలజియీబరర ఱోల్యగళిగి ఒదగిరుల అఎన్థెయున్ను

అ) సెటూరద నుస్థి తి
బ) ఠ్రెలఱుద రట్యుత

డ) దలితర శగనసు

14．＇ఒలొळళ్త లురిదడి నిలబळుదల్లదొల，ఛరిळః్తి లురిదర＇నిలబలరదు，ఐరి

అ）సెలేఙజ్ఞ
బ）ซอమురస
₹）అల్లఱుత్రుభు
డ）బసెब゙ణ

15．ఎులిबూదాల్్వర బిట్టెటిరుత స్థథ $:$
అ）అరిరినశచంటి
బ）అథణి
モ）అ戸జలङుర
డ）జౌ๖ళ్ళกల
16．＇శ్రిల సెంగீงళ్ళి రాయుణ్ణ＇యూూరు？
అ）అడ్భుత భอఱణもఠర
బ）ఎందిఱూగధరిగగ సెలరిదఱను

అ）Шంळ
బ）ळరిळర
モ）టొంซృల

18．＇चన్నడ్ तెంస్మృ＇ఈ రిలతయూగిదా ：
అ）బळురృటియూగిదా
బ）बెణణరంజితృలాగిది
₹）జిలఱంతటాగిది
డ）టెలలిన ఎల్లపు

19．＇అంబిచరతనయయదత్త＇，చలత్యనాటుద చటి ：
అ）ఒ．రల．బొలంద్ర్
బ）శా．టి．ఱుట్టృఱ్టు

అ）$\bigcirc 0$
బ）ల
ซ） 2
డ）६

అ）ధలరఱాడడ
బ）బొంగళృరిిన
モ）నినుగణద
๘）బిళగంఱియయ
 ळొళిద్దు：

అ）దులినాడు
బ）శరరฝళళి
ళ）ฝురుభూృఱి
డ）దిృడ్ఠనగర త్రదాలర

అ）ఆలృ๐ఁజనొయుల్లి సెత్యనిష్ట్ట．

च）భలఱణద చురితు తయూరరి

 యీఠగిది？
అ）ఎిడ్రంనా
బ）నอటహ

๘）తంత్రజా్ఞన లִఖన

అ）రిస్తు
బ）ఱలర్బ్త దిరిసు
च）कீலอణீกอరిళ
๘）టొలలిన ఎల్లపు

అ）$ద ు: ฆ$
బ）నలిపు
च）तెంతోっৎङ
๘）ఒల区ు

అ）Јంత్రజ్య్ભన లִవన
బ）ఎినిงలద లృలున

๘）నలటも

అ）భట్టెంగిగళ బదుళు
బ）దిలనతియు బదుళు
₹）స్పుం\＆ిశయయ బదుచు
డ）అసేఱూనతోయు బదుళు

30．＇జన＇యూอప తింగ
అ）స్తి e లింగ
బ）戸ుల్లింగ
モ）అలింగ
డ）నఱుంసేซలింగ

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Kannada Kali
 (COMMON TO ALLBRANCHES)

Time: 2 his.]

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries ©NE mark.
2. Use only Black ball goint pen for writing / dankening the circles.
3. For each question, after selecting your answer, darken the appropriate circle correspo ling to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging overwriting, use of whiteners on the OMR sheets are strictly proltibited.

Note : Substitute the words from the following eaeh sentence in appropriate place [From Q No. 1 to 3]

1. naanu uu maaDu
a) maaDutiene
b) maaDideya
c) maaDisu
d) maaDi
2. Namma manege baa ?
a) Baruttiya
b) Bandi
c) BeDa
d) Baru
3. Nanna hattira Kutka.
a) KuLituko
b) KooDu
e) Kundru
d) None.

Note: Fill in the blank choosing the right word from the group below :
4. nanage nimina sahavaasa khaniDitaa \qquad
a) BeDa
b) Beka
c) Ide
d) Illa.

Note : Translate the following Kannada question into English.
[from question No. 5 to 6]
5. Niivu yaaru 3 nam
a) who is this?
b) what is this?
c) who are you?
d) what is there?
Ver-C 1 of 3
a) who is this?
b) what is this?
c) who are you?
d) what is there?

Note : Translate the Kannada word into English. [From Q No. 7 to 16]
7. Meenu
a) Animal
c) Crow
8. Nayee
a) Pig
b) Cow
c) Dog
d) Cat
9. Aat
a) See
b) Come
c) Go
d) Play
10. Mana
a) Home

$$
\begin{array}{ll}
\text { By } & \text { b) School } \\
y & \text { d) Mind }
\end{array}
$$

11. Nanu
a) I
c) $\mathrm{H} /{ }^{2}$
b) You
d) He
12. Maga
13. Baa
a) Go
c) Visit
14. Kaagad
b) C
d) Come
a) Chair
c) Moue

b) Computer
 d) Paper
 $+$

15. Avanu
b) Sister
d) $\mathrm{Son}=$
a) Father
c) Daugher

a) He
 (c) It
 16. A A angla

a) Kannada
c) Marathi
b) She
d) They
b) English
d) Urdu.

Note : Filf in the blank by trawslating the given English word to Kannada.
[From Question Ne: 17 to 21]
17. He : \qquad
a) NAnu
b) Neenu
c) Avanu
d) AvaLu
18. When:
a) Yaaru
b) Yaavaga
c) Yelli
d) Yaake

Ver-C 2 of 3
19. Teacher :- ------
a) HuDuga
b) Manushya
c) Shikshaka/ki
d) Shishye ${ }^{2}$
20. Vegetable : \qquad
a) tarakari
b) takararu
c) tavaruru
d) tamota
21. Garden:
b) Shaale
a) Mane
c) TooTa
d) Baagilu

Note : Wri the English word for given Kannada word [From Q No. 22 to 25]
22. HaLe
a) New
c) Not
b) Now
d) Old
23. Kurci
a) Table
c) Chair
b) Book
d) Pen
24. GaNita
a) Plyysics
b) Biology
c) Mathematics
d) English
25. Shaale
a) Home
c) Office
b) Sclool
d) Room.

Note : Tra slate the following English words to Kannada [from QN.. 26 to 30]
26. Near
a) Swalpa
0.
b) hattira
d) hosa
27. Shop
a) AngaDi
o) kante
b) dukan
d) Mane.
28. See
a) NooDu
c) BiDu

b) MaaDu
d) IDu
29. Moon
a) candra
c) Naksatra

b) Suurya
d) Boomi
30. Child
a) Maanava
c) MahiLe
b) Magu
d) HeNNu

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries (GNE mark.
2. Use only Black ball point pen for writing / dankening the circles.
3. For each question, after selecting your asswer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same quéstion makes the answer invalid.
5. Damaging/overwriting, use of whiteners on the OMR sheets are strictly proltibited.

Note : Fill in the blank choosing the right word from the group below :

1. nanage ninna sahavaasa khanDitaa
a) BeDa
b) Beka
c) Ide
d) Illa.

Nota : Translate the following Kannada question into English.
[from quêstion No. 2 to 3]
2. Niive yaaru?
a) who is this?
b) what is this?
Q who are you?
d) what is there?
3. A. Idu Enu?
b) what is this?
c) who is this?
d) what is there?

Note : Filftit the blank by translating the given English word to Kannada.
2ricosoentin [From Question Ne: 4 to 8]
4. He :
a) NAnu
b) Neenu
c) Avanu
d) AvaLu
5. When:
a) Yaaru
b) Yaavaga
c) Yelli
d) Yaake

Ver-D 1 of 3

